COMPLEX MULTIPLICATION: LECTURE 11/12

1. ALGEBRAIC CURVES
Recall we are interested in studying the solutions to the equation
y? = 4a® — go(1)x — g3(7)
Now we have developed enough of the language of algebraic geometry in order to
make sense of this object. This is an affine algebraic set given by the vanishing of
the above polynomial in A%, thus it is an algebraic variety of dimension 1. However

we are really more interested in the studying the projectivistion of this curve, so
adding the extra variable z, we obtain the homogenous equation:

ZY? = 4X3 — go(1)X Z? — g3(1) 23
This is a projective variety obtained by adding the point (0 : 1 : 0). We will
show later on that this variety is in fact non-singular, this motivates the following
definition.

Definition 1.1. In this course, a curve over a perfect field k is a non-singular
projective algebraic variety over k of dimension 1.

The following section will cover the theory of algebraic curves that we will need
to discuss the theory of elliptic curves over a general field.

Remark 1.2. When k = C, curves (in our sense) are just compact Riemann surfaces,
so if you have studied Riemann surfaces before, a lot of the following results should
be quite familiar.

Let C be a curve, we write k(C) for the function field of C, and if P is a point on
C, we let k[C]p be the local ring at P. The first important result is the following

Proposition 1.3. k[C]p is a a discrete valuation ring.

Proof. Let m be the maximal ideal of k[C]p, then by definition m/m? is a 1 dimen-
sional vector space. Then since k[C]p is Noetherian, this follows from [AM] Prop
9.2. (]

A local parameter ¢ at the point P is a uniformizer of the DVR k[C]p.
Note however that the above is false if C' is not smooth.

Example 1.4. Let C be the curve defined by y* = 2 in AZ. Then the maximal
ideal m of the local ring at 0 has dimy m/m? = 2, hence m cannot be principle.

Let f € k(C) be a non-zero rational function and let ¢ be a local parameter at
P. Then since Frac(k[C],) = k(C), it follows that there exists n € Z such that
t"f € k[C]}5. We define

ordp(f) =n
the order of f at p. Since

ordpf/g =ordpf — ordpyg
1
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we obtain a homomorphism k(C)* — Z. By convention we let ordp0 = 0o so we
can extend the above to a map

k(C) = Z U

Definition 1.5. We say f is regular, resp. has a zero, resp. has a pole at P if
ordp(f) > 0 resp. ordp(f) > 0, resp. ordp(f) < 0). If f is regular at P then we
can evaluate f at P to get f(P) € k.

The following is the analogue of a familar theorem in the theory of Rieman
surfaces.

Proposition 1.6. Let f € k[C]p, then f has finitely many zeros/poles. If f is
reqular then f € k.

Proof. Beyond the scope of this course. The idea is to consider f as a function from
C to P!, and to prove the algebraic analogue of the theorem in Riemann surfaces
that the sum of the preimages of any point counted with multiplicity is equal to a
number n independend of the point. ([l

Exercise: Let C be the curve y? = 23 + 2. We checked this was nonsingular last
time. Let P be the point (0,0).

i) Show that mp/m% is generated by y, hence y is uniformizer at P.

ii) Compute ordp(x).

We now discuss morphisms between curves, the following property is very special
to smooth curves.

Proposition 1.7. Let ¢ : C1 — V be a rational map where V.C P™ is a projective
variety. Then for any point P € Cy, f is reqular at P and hence f is a regqular
map.

Proof. By definition f is given by a tuple (go : ... : gn) where the g; € k(C). Let
P € C and let t be a local parameter at P, then let

m = rniin(OI“dP(gi))

Then ¢ is also given by
t"™go: ... t7Tgn)
which by definition of m is regular at P. O

We also need to following theorem whose proof is beyond the scope of this course.

Proposition 1.8. Let ¢ : C; — Cy be a morphism of curves, then ¢ is either
surjective or constant.

Remark 1.9. This is analogous to the property that a holmorphic map between
Rieman surfaces is either constant or surjective. The point is that projectivity is
the algebraic analogue of compactness, so that the image of such morphism will be
closed. Here we mean closed in the Zariski topology, we have not defined this yet
but for curves the closed sets are just points. The result then follows by noting
that C; is connected and a morphism of varieties is necessarily continuous for the
Zariski topology.
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The results above allow us to deduce that algebraic curves have a rather simple
description using their fraction fields. Let C; and C5 be curves over k and let
¢ : C1 — C5 be a morphism of curves defined over k. Then if ¢ is non-constant,
we obtain a homorphism of function fields ¢* : k(C2) — k(C4). The main result is
then the following.

Theorem 1.10. The association C — k(C) gives a bijection between isomorhpism
classes of algebraic curves over k and field extensions K/k of transcendence degree
1 such that K Nk = 0. The association ¢ — ¢* induces a correspondence between
non-constant morphisms of algebraic curves defined over k and field injections fixing

k.

Remark 1.11. For people familiar with category, this just says that the category of
algebraic curves and non-constant morphisms between them is equivalence to the
opposite category of fields k' as above and injections between them.

This theorem is implied by the following proposition.

Proposition 1.12. Let Cy and Cs be curves.

i) Let ¢ : C1 — C3 be a non-constant morphism defined over k, then k(Cy)/¢*k(Cs)
is a finite extension.

it) Let i : k(C3) — k(Cy) be an inclusion of fields, then there exists a unique
¢ : C1 — Cs such that ¢* =1

iii) Let K/k be a field of transcendence degree 1 over k such that K Nk = k,
then there exists an algebraic curve C defined over k such that k(C) = K.

Proof. 1) k(C1) and k(C5) both have transdence degree 1 over k, hence k(C4)/¢*k(Cs)
is an algebraic extension, but k(Cs2) is finitely generated over k hence the extension
is finite.

ii) Let Cy C P"™ and wlog. assume C' is not contained in the hyperplane cute
out by Xy. For i =1,...,n let g; € k(C3) be the rational function corresponding to
X;/Xo on Cy. Then

¢ = (1:igy:...:ig5)
is a rational map between C; and Cy which satisfies ¢* = i. Then ¢ is not constant
since not all the g; are constant, otherwise Cy would just be a point.

If = (fo:...: fn) was another rational map such that ¢* = ¢, then

filfo=v"g; = ¢"gi = ig;
hence ¥ = ¢.

iii) See Hartshorne for the proof of the algebraically closed case. Given K, the
idea is to look at all the set C' of valuations of K, this should correspond to the
points of K. Let U C C be a subset such that C\U is finite, then one defines
kU] = (e Rp where R, is the valuation ring of p. One shows that this k[U] is
the coordinate ring of an affine curve whose points correspond precisely to U. [

Ezercise: Let k = k, recall a valuation on K = k((t)) is a function v : KX — Z
such that

i) v(ab) = v(a) + v(b)

ii) v(a 4+ b) > min(v(a), v(b))

a) Let a € k, and for f € K let f(t) = (t—a)" 5 where t —a{ g(t), h(t). Define
va(f) = n, show that v, is a valuation on k.
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b) Let f = % and let n = deg g,m = deg h. Define v (f) = m — n, show that
Vs 18 a valuation on K.

c¢) Let v be a valuation on K such that v(k*) = 0, prove that v is of the form
v, for some a € k U co.

d) Let R, C K be the valuation ring corresponding to v,. Show that Nyep R, =

k[t].

This allows us to define the structure of an affine algebraic variety on the set
{va : a € k}, whose ring of regular functions is Ngerp Ry = kt], so that the resulting
variety is just A'. We can repeat this procedure to get a cover of the set of valuations
of K. One can check that the resulting variety is isomorphic to P*.

Definition 1.13. Let ¢ : C7 — C5 be a morphisms of curves. We define the degree
deg ¢ of ¢ to be 0 if ¢ is constant and the integer [k(Cy) : ¢*k(C2)] otherwise.

In the setting of compact Riemann surfaces, one usually defines the degree of a
map ¢ to be the number of preimages of a point P € C5 counted with multiplicity
which one shows is independent of the point. That this is correct algebraic analogue
follows from the next result.

Given ¢ : C1 — C3 be a map of curves, let @ € C; and let ¢ be a uniformiser of
the local ring at ¢(Q). Then ¢*t € k(C1) and we let eg = ordg(¢*t), this is the
ramificaiton index at Q.

Proposition 1.14. Let ¢ : C; — Cs be a morphism of degree n. For P € Cs, let
¢~ (P) ={Q1,...,Qk}, then we have

k
dcq=n
i=1
Proof. See [Hartshorne] II 6.9 O

Corollary 1.15. Let ¢ : C1 — Cs be a morphism of elliptic curves, if dego =1,
then ¢ is an isomorphism.

Proof. As deg¢ = 1, ¢* is an isomorphism of fields, hence there exists an inverse
¥* : k(Cy) — k(C3). This corresponds to a rational map v : Cy — C7 which by
7?7 is a morphism of curves. Then since ©¥*¢* and ¢*¢* are the identity maps, it
follows that ¢ and ¥ ¢ are the identity. O

1.1. The Frobenius map. Suppose now that char(k) = p > 0 and let ¢ = p".
For any f € k[z1,...,xn], f = ;ar X! where I = (i1, ...,i,) € Z™ and X! denotes
zi'...xin we define a new element f (9) by raising all the coefficients of f to the ¢

power, i.e.
f(Q) - Z a‘}XI
I

Let C' C P" be an algebraic curve and let I be the homogenous ideal correspond-
ing to V. Then we define a new ideal
1@ = ideal generated by{f(q) cfel}

I(9) is homogeneous and we let C@) be the variety defined by I(9).
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Remark 1.16. The construction C'(9) is independent of the embedding into P™, since
if C C P™ is another embedding and ¢ = (fo : ... : fin) : P* — P™ inducing an
isomorphism between the embedded curves, then raising the coefficients of the f;
to the ¢'" power gives an isomorphism between the embedded C(9)’s.

Example 1.17. Let C in P? be the curve defined
2Y? = X*+aXZ? +b2°
then C(9 is defined by
ZY? =X+ a'XZ? + 127
There is a natural map ¢ : C — C@ which is given by
G (o y) — (ad i xd)

If f vanishes on z, the clearly f(? vanishes on ¢(z), so this is well defined.
Definition 1.18. We call ¢ the ¢** power Frobenius map.

Recall a field extension L/K is called separable if the minimal polynomial of any
a € L over K is a power of (X — a).

Definition 1.19. We say a map of curves ¢ : C; — Cy (defined over k) is sepa-
rable (resp. inseparable resp. purely inseparable) if the corresponding extension of
function fields k(C1)/¢*k(C5) has that property.

Proposition 1.20. Let k be a field of characteristic p > 0, C' a curve defined over
k and ¢ : C — C9 the ¢" power frobenius map.

0) 6*K(C@) = K(C) = {f7: f € K(C)}.

b) ¢ purely inseparable of degree q.

Proof. a) Recall the desciption given by Yihang of the function field k(C); its el-
ements are given by quotients f/g where f and g are homogeneous polynomials
of the same degree. Then ¢*(f/g) = f(zd,...,x2)/g(xd,...,x1), but on the other
hand K(C)? consists of polynomials of the form f7/¢g9. But since we assumed k
was perfect any polynomial f(z{,...,z%) is a ¢ power of the polynomial whose co-
efficients are the ¢! roots of the coefficisntaof f, hence ¢*f/g € k(C)?. Conversely
any polynomial which is a ¢'* power is of the form f(z{,...,2%) so we obtain the
reverse inclusion, thus the two fields coincide.

b) The fact that the extension is purely inseparable follows immediately from
part a). To prove that the degree is ¢, let t € k(C') be a uniformiser at any point
P. We need the following Lemma.

Lemma 1.21. The field extension k(C') is a finite separable extension of k(t).

Proof of ??. t cannot be algebraic over k since if > . a;t" = 0, wlog. we can
assume ag # 0, then

1 <ordp Zaiti =ordpag =0
i=1
Thus since k(C) is finintely generated of transcendence degree 1 over k, k(C) is a
finite extension of k(t).
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Thus for x € k(C), x has a minimal polynomial ® over k(¢). In fact (7, X) be
the polynomial in two variables such that ®(¢, X) is the minimal polynomial of X.
Then if z is not separable, we must have

(T, X) =9(T, XP)
for some other polynomial .

We want to construct a polynomial of smaller degree in X for which z is a root,
thus contradicting the minimality of ®. Let

(T, X) =Y ayT' X7
4,J
and let b;; = a;j/ P which exists since we assumed k was perfect. Then grouping
together the terms for which ¢ is the same mod p, we obtain:

p—1
i j k
OTX) =3 > (g T XT
k=0 1,5

p—1
=3 D (b T XI)PT"
k=0 4,5
p—1
=@ (T, X)PT*
k=0
Now if evaluate at (¢,z), then the order of vanishing at P of ®4 (T, X)T* is
distinct modp. Hence if some @ (¢, )P is non-zero, the expression vanishes to finite
order at P so cannot be 0. Thus ®x(¢,z)? = 0 for all k¥ and hence ®(¢t,z) = 0
for all k. Then some @ (T, X) must have a term involving X, then ®4(t,2) = 0
contradicting minimality of ®. O

‘We have the tower of fields
k(C

separabM

)
k(t) —— k(C)1(t) «<—— k(C)?
Thus the extension k(C)/k(C)%(t) is both separable and purely inseparable,
hence k(C) = k(C)9(¢), so we need to show k(C)(t)/k(C)? has degree ¢q. Since
t9 € k(C)9(t), we only need to check t%/? is not in k(C)?, but ¢ is a uniformiser at
O, so that t9/? would have non-integral valuation at p otherwise. [

urely inseparable



